easyfreecv logo

LLMs Explained: How Large Language Models Work

December 8th, 2025

1,234 views
LLMs Explained: How Large Language Models Work

Artificial Intelligence has grown faster than any other technology in the past decade, and one of the biggest reasons behind this growth is the rise of Large Language Models, commonly known as LLMs. Whether you're using ChatGPT to write an email, Gemini to summarize a document, or GitHub Copilot to write code—LLMs are silently powering everything.

But what exactly is an LLM? कैसे काम करती है ये technology? और क्यों ये दुनिया बदल रही है?

What is an LLM (Large Language Model)?

An LLM is an Artificial Intelligence model that can understand, process, and generate human language.
Examples include:

  • ChatGPT

  • Google Gemini

  • Claude

  • Meta LLaMA

  • GitHub Copilot

LLM basically एक super-advanced chatbot नहीं है—यह एक पूरा smart system है जो language को समझ सकता है, questions का answer दे सकता है, content लिख सकता है, code generate कर सकता है, और problem-solving भी कर सकता है।


Why Are LLMs So Powerful?

एक normal software सिर्फ वही काम करता है जो आप उसे manually सिखाते हो।

लेकिन LLMs कुछ अलग हैं…

✔ They learn from huge amounts of data

LLMs को इंटरनेट से लेकर books, websites, articles, research papers, coding repositories—सब से train किया जाता है।

✔ They generate human-like text

इनकी लिखी हुई lines बिल्कुल इंसान जैसी लगती हैं।

✔ They understand context

अगर आप पूछें:
“Apple अच्छा है?”
तो model समझेगा कि आप Fruit के बारे में बात कर रहे हो या Company के बारे में — depending on context.


How Does an LLM Work? (Simple Explanation)

LLM का काम तीन बड़े steps में होता है:


 Training Phase – The Learning Stage

Model को billions of text examples से train किया जाता है।

Training के दौरान, model सीखता है:

  • How sentences are formed

  • What words commonly appear together

  • Language patterns

  • Logic and reasoning

  • Knowledge—from history to technology

इसे आप ऐसे समझो:

जैसे कोई बच्चा बहुत सारी किताबें पढ़ता है और धीरे-धीरे language समझने लगता है…

वैसे ही LLM भी बहुत सारा data पढ़कर सीखता है।

 Neural Networks (Transformer Architecture)

LLMs work on a special technology called Transformers.

Transformer दो काम करता है:

✔ Encoder → Understands your input

✔ Decoder → Generates the best possible output

Transformer architecture helps the AI understand:

  • Word meanings

  • Sentence relationships

  • Context

  • Intent

यही architecture LLMs को powerful बनाती है।


 Next Word Prediction – The Heart of LLMs

LLM का main काम है:

👉 Next word predict करना
या
👉 Missing text पूरा करना

Example:
You say: “I am going to the…”
Model predicts: “office”, “market”, “gym”, “store” etc.

Millions of similar predictions combine होकर एक पूरा answer बन जाता है।


What Makes LLMs Intelligent?

LLMs has parameters it basically stores the  knowledge + logic of the model

LLM Parameters
GPT-2 1.5B
GPT-3 175B
GPT-4 1T+
Modern LLMs 2–10T

More parameters → more intelligence → more accuracy.


Why Are LLMs Growing So Fast?

Because they can solve real-life problems:

✔ Content Writing

Blogs, email, copywriting ready in seconds

✔ Coding

Developers get suggestions and error fixes 

✔ Customer Support

Chatbots give  instant answers

✔ Learning

Students notes, summaries, explanations 

✔ Marketing

Ads, captions, scripts all AI generated

✔ Business Automation

Emails replies, documents, CRM messages all automated

so company LLMs adopt


Benefits of LLMs

✔ Speed

Minutes work in  seconds 

✔ Accuracy

High-quality answers generate 

✔ Cost Saving

Manual work costs less

✔ Scalability

24×7 unlimited communication possible।

✔ Creativity

Poems, designs, ideas all can be generated


Challenges of LLMs

Everything has limitations, AI

Sometimes produces wrong answers (Hallucination)

 No real emotions or experiences

 Biased data से biased answers भी मिल सकते हैं

Requires huge server cost and computing power

इन challenges पर कंपनियाँ लगातार काम कर रही हैं।


Real-World Uses of LLMs

✔ Healthcare

Patient records analyze , diagnosis suggestions, reports summarization।

✔ Finance

Risk analysis, fraud detection, automated emails

✔ Education

Notes, tutorials, quizzes, assignments generate

✔ E-commerce

Product descriptions, SEO content, customer chat support।

✔ Software Development

Code completion, debugging, documentation


Future of LLMs

Future LLMs:

  • More accurate होंगे

  • Real-time इंटरनेट access करेंगे

  • Cloud के बजाय personal devices पर चलेंगे

  • Voice + Image + Video को भी fully समझेंगे

  • Personalized AI assistant बनेंगे


Share:

Join the Discussion

2 Comments

J

Jane Doe

This was such a helpful article, thank you for sharing!

J

John Smith

Great insights on headless Shopify. I'm planning to use Next.js for my next project.

    AI Assistant

    Ask me anything!